At Ksana Health,
evidence-based practice and design are in our DNA. The key design principles that inform our products are outlined in the boxes below, as are examples of the research evidence (both from our group and others) that support these principles.
Smartphones and wearables can validly measure behavior
These behaviors are related to mental health
Assessing client progress and providing feedback improves outcomes
Just-in-time nudges will improve completion of therapy homework
Completing out of session homework improves outcomes
1. Smartphones and wearables can validly measure behavior
1.1 Evidence that phone sensors are related to mood and mental disorders
Aledavood, T., Torous, J., Hoyos, A. M. T., Naslund, J. A., Onnela, J.-P., & Keshavan, M. (2019). Smartphone-Based Tracking of Sleep in Depression, Anxiety, and Psychotic Disorders, Current Psychiatry Reports, 21(7), 1–9. https://doi.org/10.1007/s11920-019-1043-y
Chen, Z., Lin, M., Chen, F., Lane, N., Cardone, G., Wang, R., et al. (2013). Unobtrusive Sleep Monitoring using Smartphones (pp. 1–8). Presented at the ICTs for improving Patients Rehabilitation Research Techniques, IEEE. http://doi.org/10.4108/icst.pervasivehealth.2013.252148
1.2 Evidence that phone sensors can measure sleep
Aledavood, T., Torous, J., Hoyos, A. M. T., Naslund, J. A., Onnela, J.-P., & Keshavan, M. (2019). Smartphone-Based Tracking of Sleep in Depression, Anxiety, and Psychotic Disorders, Current Psychiatry Reports, 21(7), 1–9. https://doi.org/10.1007/s11920-019-1043-y
Chen, Z., Lin, M., Chen, F., Lane, N., Cardone, G., Wang, R., et al. (2013). Unobtrusive Sleep Monitoring using Smartphones (pp. 1–8). Presented at the ICTs for improving Patients Rehabilitation Research Techniques, IEEE. http://doi.org/10.4108/icst.pervasivehealth.2013.252148
1.3 Evidence the wrist heart rate monitors are accurate compared to ECG
Nelson, B. W., & Allen, N. B. (2019). Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. JMIR mHealth and uHealth, 7(3), e10828–16. http://doi.org/10.2196/10828
2. These behaviors are related to mental health
2.1 Evidence that patterns of mobile app use are related to mental health
Escobar-Viera, C. G., Shensa, A., Bowman, N. D., Sidani, J. E., Knight, J., James, A. E., & Primack, B. A. (2018). Passive and active social media use and depressive symptoms among United States adults. Cyberpsychology, Behavior, and Social Networking, 21(7), 437-443. https://doi.org/10.1089/cyber.2017.0668
Kim, S., Favotto, L., Halladay, J., Wang, L., Boyle, M. H., & Georgiades, K. (2020). Differential associations between passive and active forms of screen time and adolescent mood and anxiety disorders. Social Psychiatry and Psychiatric Epidemiology, 55(11), 1469–1478. https://doi.org/10.1007/s00127-020-01833-9
Liang, P. P., Liu, T., Cai, A., Muszynski, M., Ishii, R., Allen, N., Auerbach, R., Brent, D., Salakhutdinov, R., & Morency, L.-P. (2021). Learning language and multimodal privacy-preserving markers of mood from Mobile Data. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). https://doi.org/10.18653/v1/2021.acl-long.322
Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among U.S. young adults. Computers in Human Behavior, 69, 1–9. https://doi.org/10.1016/j.chb.2016.11.013
Thorisdottir, I. E., Sigurvinsdottir, R., Asgeirsdottir, B. B., Allegrante, J. P., & Sigfusdottir, I. D. (2019). Active and passive social media use and symptoms of anxiety and depressed mood among Icelandic adolescents. Cyberpsychology, Behavior, and Social Networking, 22(8), 535–542. https://doi.org/10.1089/cyber.2019.0079
2.2 Evidence that sleep is related to mental health
Bei, B., Manber, R., Allen, N. B., Trinder, J., & Wiley, J. F. (2016). Too long, too short, or too variable? Sleep intraindividual variability and its associations with perceived sleep quality and mood in adolescents during naturalistically unconstrained sleep. Sleep, 40(2), zsw067. https://doi.org/10.1093/sleep/zsw067
Blake, M. J., Trinder, J. A., & Allen, N. B. (2018). Mechanisms underlying the association between insomnia, anxiety, and depression in adolescence: Implications for behavioral sleep interventions. Clinical Psychology Review, 63, 25–40. https://doi.org/10.1016/j.cpr.2018.05.006
Blake, M. J., Snoep, L., Raniti, M., Schwartz, O., Waloszek, J. M., Simmons, J. G., Murray, G., Blake, L., Landau, E. R., Dahl, R. E., Bootzin, R., McMakin, D. L., Dudgeon, P., Trinder, J., & Allen, N. B. (2017). A cognitive-behavioral and mindfulness-based group sleep intervention improves behavior problems in at-risk adolescents by improving perceived sleep quality. Behaviour Research and Therapy, 99, 147–156. https://doi.org/10.1016/j.brat.2017.10.006
Littlewood, D. L., Kyle, S. D., Carter, L. A., Peters, S., Pratt, D., & Gooding, P. (2019). Short sleep duration and poor sleep quality predict next-day suicidal ideation: an ecological momentary assessment study. Psychological medicine, 49(3), 403-411. https://doi.org/10.1017/s0033291718001009
2.3 Evidence that online language is related to mental health
Al-Mosaiwi, M., & Johnstone, T. (2018). In an Absolute State: Elevated Use of Absolutist Words Is a Marker Specific to Anxiety, Depression, and Suicidal Ideation. Clinical Psychological Science, 6(4), 529–542. https://doi.org/10.1177/2167702617747074
Coppersmith, G., Leary, R., Crutchley, P., & Fine, A. (2018). Natural Language Processing of Social Media as Screening for Suicide Risk. Biomedical Informatics Insights, 10, 1–11. https://doi.org/10.1177/1178222618792860
Edwards, T., & Holtzman, N. S. (2017). A meta-analysis of correlations between depression and first person singular pronoun use. Journal of Research in Personality, 68, 63–68. https://doi.org/10.1016/j.jrp.2017.02.005
Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preoţiuc-Pietro, D., et al. (2018). Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences, 115(44), 11203–11208. http://doi.org/10.1073/pnas.1802331115
Merchant, R. M., Asch, D. A., Crutchley, P., Ungar, L. H., Guntuku, S. C., Eichstaedt, J. C., et al. (2019). Evaluating the predictability of medical conditions from social media posts. PLoS ONE, 14(6), e0215476–12. https://doi.org/10.1371/journal.pone.0215476
Liu, T., Meyerhoff, J., Eichstaedt, J. C., Karr, C. J., Kaiser, S. M., Kording, K. P., Mohr, D. C., & Ungar, L. H. (2022). The relationship between text message sentiment and self-reported depression. Journal of Affective Disorders, 302, 7–14. https://doi.org/10.1016/j.jad.2021.12.048
Vine, V., Boyd, R. L., & Pennebaker, J. W. (2020). Natural emotion vocabularies as windows on distress and well-being. Nature Communications, 11(1), 4525. https://doi.org/10.1038/s41467-020-18349-0
2.4 Evidence that physical activity is related to mental health
Schuch, F. B., Vancampfort, D., Firth, J., Rosenbaum, S., Ward, P. B., Silva, E. S., Hallgren, M., Ponce De Leon, A., Dunn, A. L., Deslandes, A. C., Fleck, M. P., Carvalho, A. F., & Stubbs, B. (2018). (2018). Physical activity and incident depression: a meta-analysis of prospective cohort studies. American Journal of Psychiatry, 175(7), 631-648. https://doi.org/10.1176/appi.ajp.2018.17111194
Stavrakakis, N., Booij, S. H., Roest, A. M., de Jonge, P., Oldehinkel, A. J., & Bos, E. H. (2015). Temporal dynamics of physical activity and affect in depressed and nondepressed individuals. Health Psychology, 34(Suppl), 1268–1277. https://doi.org/10.1037/hea0000303
Harvey, S., Hotopf, M., Øverland, S., & Mykletun, A. (2010). Physical activity and common mental disorders. British Journal of Psychiatry, 197(5), 357-364. https://doi.org/10.1192/bjp.bp.109.075176
2.5 Evidence that geographic movement and/or location is related to mental health
Chow PI, Fua K, Huang Y, Bonelli W, Xiong H, Barnes LE, et al. (2017). Using mobile sensing to test clinical models of depression, social anxiety, state affect, and social isolation among college students. J Med Internet Res. 19(3):e62. https://doi.org/10.2196/jmir.6820
Engemann, K., Pedersen, C. B., Arge, L., Tsirogiannis, C., Mortensen, P. B., & Svenning, J.-C. (2019). Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proceedings of the National Academy of Sciences, 116(11), 5188–5193. https://doi.org/10.1073/pnas.1807504116
Rohani, D. A., Faurholt-Jepsen, M., Kessing, L. V., & Bardram, J. E. (2018). Correlations between objective behavioral features collected from mobile and wearable devices and depressive mood symptoms in patients with affective disorders: systematic review. JMIR mHealth and uHealth, 6(8), e165. https://doi.org/10.2196/mhealth.9691
Saeb, S., Lattie, E. G., Kording, K. P., & Mohr, D. C. (2017). Mobile phone detection of semantic location and its relationship to depression and anxiety. JMIR mHealth and uHealth, 5(8), e112. https://doi.org/10.2196/mhealth.7297
2.6 Evidence that music listening is related to emotional states
Park, M., Thom, J., Mennicken, S., Cramer, H., & Macy, M. (2019). Global music streaming data reveal diurnal and seasonal patterns of affective preference. Nature Human Behaviour, 3(3), 230–236. https://doi.org/10.1038/s41562-018-0508-z
Schriewer K, Bulaj G. Music streaming services as adjunct therapies for depression, anxiety, and bipolar symptoms: convergence of digital technologies, mobile apps, emotions, and global mental health. Frontiers in Public Health. 2016;4:217. https://doi.org/10.3389/fpubh.2016.00217
3. Assessing client progress and providing feedback improves outcomes
3.1 Assessing client progress and providing feedback improves outcomes
Lambert, M. J., Whipple, J. L., Smart, D. W., Vermeersch, D. A., Nielsen, S. L., & Hawkins, E. J. (2001). The effects of providing therapists with feedback on patient progress during psychotherapy: Are Outcomes Enhanced? Psychotherapy Research, 11(1), 49–68. https://doi.org/10.1093/ptr/11.1.49
Lambert, M. J., Whipple, J. L., & Kleinstäuber, M. (2018). Collecting and delivering progress feedback: A meta-analysis of routine outcome monitoring. Psychotherapy, 55(4), 520-537. https://doi.org/10.1037/pst0000167
4. Delivering just-in-time nudges will improve completion of therapy homework
4.1 Evidence that mobile apps can improve treatment adherence
Pérez-Jover, V., Sala-González, M., Guilabert, M., & Mira, J. J. (2019). Mobile Apps for Increasing Treatment Adherence: Systematic Review. Journal of Medical Internet Research, 21(6), e12505–14. http://doi.org/10.2196/12505
Tang, W., & Kreindler, D. (2017). Supporting Homework Compliance in Cognitive Behavioural Therapy: Essential Features of Mobile Apps. JMIR Mental Health, 4(2), e20–10. http://doi.org/10.2196/mental.5283
4.2 Evidence that just in time interventions facilitate behavior change
Klasnja, P., Smith, S., Seewald, N. J., Lee, A., Hall, K., Luers, B., et al. (2018). Efficacy of Contextually Tailored Suggestions for Physical Activity: A Micro-randomized Optimization Trial of HeartSteps. Annals of Behavioral Medicine, 53(6), 573–582. http://doi.org/10.1093/abm/kay067.
Rathbone, A. L., & Prescott, J. (2017). The Use of Mobile Apps and SMS Messaging as Physical and Mental Health Interventions: Systematic Review. Journal of Medical Internet Research, 19(8), e295–13. http://doi.org/10.2196/jmir.7740.
5. Completing out of session homework improves outcomes
5.1 Completing out of session homework improves outcomes
Kazantzis, N., Whittington, C., Zelencich, L., Kyrios, M., Norton, P. J., & Hofmann, S. G. (2016). Quantity and quality of homework compliance: a meta-analysis of relations with outcome in cognitive behavior therapy. Behavior Therapy, 47(5), 755-772. http://doi.org/10.1016/j.beth.2016.05.002